Home > Uncategorized > Storing data directly in GPU memory with #CLOO in C#

Storing data directly in GPU memory with #CLOO in C#

Although I’m not entirely sure of a practical application for this. This application, using C# and CLOO can store arbitrary data in the GPU memory. In this case, I’m picking a large file off the disk, and putting it in GPU memory.

In the case of this NVIDIA Geforce card, the memory is dedicated to the GPU, and not shared with the system, ordinarily.

TL;DR; The Github repo is here – https://github.com/infiniteloopltd/GpuMemoryDemo

The core function is here;

 static void Main()
        {
            var platform = ComputePlatform.Platforms[0];
            var device = platform.Devices.FirstOrDefault(d => d.Type.HasFlag(ComputeDeviceTypes.Gpu));
            var context = new ComputeContext(ComputeDeviceTypes.Gpu, new ComputeContextPropertyList(platform), null, IntPtr.Zero);
            var queue = new ComputeCommandQueue(context, device, ComputeCommandQueueFlags.None);

            const string largeFilePath = "C:\\Users\\fiach\\Downloads\\datagrip-2024.3.exe";
            var contents = File.ReadAllBytes(largeFilePath);

            var clBuffer = Store(contents, context, queue);

            var readBackBytes = Retrieve(contents.Length, clBuffer, queue);

            Console.WriteLine($"Original String: {contents[0]}");
            Console.WriteLine($"Read Back String: {readBackBytes[0]}");
            Console.WriteLine($"Strings Match: {contents[0] == readBackBytes[0]}");

            
            // Memory leak here. 
            //Marshal.FreeHGlobal(readBackPtr);
            //Marshal.FreeHGlobal(buffer);
            
        }

        public static ComputeBuffer<byte> Store(byte[] stringBytes, ComputeContext context, ComputeCommandQueue queue)
        {
            var buffer = Marshal.AllocHGlobal(stringBytes.Length);

            Marshal.Copy(stringBytes, 0, buffer, stringBytes.Length);

            var clBuffer = new ComputeBuffer<byte>(context, ComputeMemoryFlags.ReadWrite, stringBytes.Length);

            queue.Write(clBuffer, true, 0, stringBytes.Length, buffer, null);
            
            return clBuffer;
        }

        public static byte[] Retrieve(int size, ComputeBuffer<byte> clBuffer, ComputeCommandQueue queue)
        {
            var readBackPtr = Marshal.AllocHGlobal(size);

            queue.Read(clBuffer, true, 0, size, readBackPtr, null);

            var readBackBytes = new byte[size];

            Marshal.Copy(readBackPtr, readBackBytes, 0, size);

            return readBackBytes;
        }
    }

we’ll walk through a C# program that demonstrates the use of OpenCL to store and retrieve data using the GPU, which can be beneficial for performance in data-heavy applications. Here’s a breakdown of the code:

1. Setting Up OpenCL Context and Queue

The program begins by selecting the first available compute platform and choosing a GPU device from the platform:

csharpCopy codevar platform = ComputePlatform.Platforms[0];
var device = platform.Devices.FirstOrDefault(d => d.Type.HasFlag(ComputeDeviceTypes.Gpu));
var context = new ComputeContext(ComputeDeviceTypes.Gpu, new ComputeContextPropertyList(platform), null, IntPtr.Zero);
var queue = new ComputeCommandQueue(context, device, ComputeCommandQueueFlags.None);
  • ComputePlatform.Platforms[0]: Selects the first OpenCL platform on the machine (typically corresponds to a GPU vendor like NVIDIA or AMD).
  • platform.Devices.FirstOrDefault(...): Finds the first GPU device available on the platform.
  • ComputeContext: Creates an OpenCL context for managing resources like buffers and command queues.
  • ComputeCommandQueue: Initializes a queue to manage commands that will be executed on the selected GPU.

2. Reading a Large File into Memory

The program then loads the contents of a large file into a byte array:

csharpCopy codeconst string largeFilePath = "C:\\Users\\fiach\\Downloads\\datagrip-2024.3.exe";
var contents = File.ReadAllBytes(largeFilePath);

This step reads the entire file into memory, which will later be uploaded to the GPU.

3. Storing Data on the GPU

The Store method is responsible for transferring the byte array to the GPU:

csharpCopy codevar clBuffer = Store(contents, context, queue);
  • It allocates memory using Marshal.AllocHGlobal to hold the byte array.
  • The byte array is then copied into this allocated buffer.
  • A ComputeBuffer<byte> is created on the GPU, and the byte array is written to it using the Write method of the ComputeCommandQueue.

Note: The Store method utilizes Marshal.Copy to handle memory copying between managed memory (RAM) and unmanaged memory (GPU).

4. Retrieving Data from the GPU

The Retrieve method is responsible for reading the data back from the GPU into a byte array:

csharpCopy codevar readBackBytes = Retrieve(contents.Length, clBuffer, queue);
  • The method allocates memory using Marshal.AllocHGlobal to hold the data read from the GPU.
  • The Read method of the ComputeCommandQueue is used to fetch the data from the GPU buffer back into the allocated memory.
  • The memory is then copied into a managed byte array (readBackBytes).

5. Verifying the Data Integrity

The program prints the first byte of the original and retrieved byte arrays, comparing them to verify if the data was correctly transferred and retrieved:

csharpCopy codeConsole.WriteLine($"Original String: {contents[0]}");
Console.WriteLine($"Read Back String: {readBackBytes[0]}");
Console.WriteLine($"Strings Match: {contents[0] == readBackBytes[0]}");

This checks whether the first byte of the file content remains intact after being transferred to and retrieved from the GPU.

6. Memory Management

The program has a commented-out section for freeing unmanaged memory:

csharpCopy code//Marshal.FreeHGlobal(readBackPtr);
//Marshal.FreeHGlobal(buffer);

These lines should be used to free the unmanaged memory buffers allocated with Marshal.AllocHGlobal to avoid memory leaks, but they are commented out here, leaving room for improvement.

Potential Improvements and Issues

  • Memory Leaks: The program does not properly free the unmanaged memory allocated via Marshal.AllocHGlobal, leading to potential memory leaks if run multiple times.
  • Error Handling: The program lacks error handling for situations like missing GPU devices or file read errors.
  • Large File Handling: For large files, this approach may run into memory constraints, and you might need to manage chunked transfers for efficiency.

In summary, this program demonstrates how to work with OpenCL in C# to transfer data between the host system and the GPU. While it shows the core functionality, handling memory leaks and improving error management should be considered for a production-level solution.

  1. No comments yet.
  1. No trackbacks yet.

Leave a comment